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Proper orthogonal decomposition (POD) is applied for examining modal activity. The
extraction of proper orthogonal modal co-ordinates (POCs) is outlined. The proper
orthogonal values (POVs) are the mean squared values of the POCs. The number of POVs
above the noise #oor provides a bound on the number of signi"cant modes based on POVs
above the noise #oor. The ideas are illustrated on a linear cantilevered beam experiment.
The displacement ensembles are obtained by processing six strain measurements. Coherent
proper orthogonal modes (POMs) and POVs above the noise #oor together con"rm that six
active modes are detected in the system. The distribution of modal components in POCs is
discussed. The characteristics of the POMs, POVs and POCs are then examined in the
presence of added noise.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

This paper is about the application of proper orthogonal decomposition (POD) for
obtaining information about the active or signi"cant states of a vibration system.

Proper orthogonal decomposition, also known as Karhunen}Loève decomposition and
principal component analysis, is a statistical method of "nding optimal distributions of
energy from a set of measurement histories. POD has become a standard tool in turbulence
studies since being applied by Lumley [1]. POD provides a measure of spatial coherence
[1}3], and can be used to estimate the active dimension of a dynamical system [3, 4]. It is
used to produce empirical modes for modal reduction of non-linear systems [5}10], and can
aid in system identi"cation [11, 12] and in some cases modal analysis [13}15].

POD is a statistical method applied to the correlation matrix derived from a set of
measurement histories. POD results in a set of proper orthogonal modes (POMs) and
proper orthogonal values (POVs). POMs are the optimal distributions of signal power, and
POVs indicate the amount of signal power associated with the corresponding POMs.
Proper orthogonal modal co-ordinates (POCs) can be de"ned by using POMs as basis
functions. As such, the POVs turn out to be the mean squared values of the corresponding
POCs, and the POVs can thus be used to gage the signi"cance of activity associated with
the corresponding POMs.

Using the POVs, the POMs can be ranked in descending order of signal power. The
cumulative power then is the truncated sum of the POVs. It has been customary to say that
the number of signi"cant, or active, modes are those of the largest power that contain, say,
99% or 99)9% of the total signal power [1, 3, 4, 8, 16]. This is a prescribed criterion. The
chosen number varies with the problem at hand and the insight of the researcher.
022-460X/02/000000#13 $35.00/0 � 2002 Elsevier Science Ltd. All rights reserved.
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In this paper, we explore the usage of POCs to assess modal activity. Speci"cally, we
examine the meaning, in terms of the number of active modes, of POVs above the noise
#oor. We look at the POCs to see how frequency information can be obtained, and how
that information helps in determining the number of active modes. These ideas are
addressed in application to an experimental linear beam.We then look at the e!ect of added
noise.

Next, we review the application of POD toward the extraction of modal activity.

2. POD AND MODAL ACTIVITY

In this section, we describe more details about the POD process, as will be applied in this
work. We will borrow a criterion for the signi"cance of modal activity from a similar tool,
singular system analysis, which will therefore also be summarized.

2.1. PROPER ORTHOGONAL DECOMPOSITION

Application of POD to structures typically requires sensed dynamical quantities at
M locations within the system. For this discussion, these quantities are taken to be
displacements x

�
(t), x

�
(t),2, x

�
(t), although other states can be used [17, 18]. When the

displacements are sampled N times, we can form displacement-history arrays, such that
x
�
"(x

�
(t
�
),x

�
(t
�
),2,x

�
(t
�
))�, for i"1,2,2,M. (The means are sometimes subtracted from

the displacement histories.) In performing the proper orthogonal decomposition, these
displacement histories are used to form an N�M ensemble matrix,

X"[x
�
, x

�
,2, x

�
].

Each row of X represents a point in the measurement space at a particular instant in time.
TheM�M correlation matrix R"(1/N)X�X is then formed. Since R is real and symmetric,
its eigenvectors are orthogonal. The eigenvectors v of R are the proper orthogonal modes,
and the eigenvalues � are the proper orthogonal values.

The POMs are the principal axes of inertia of the data in the measurement space, and the
POVs indicate the mean squared values of the data in the directions of the corresponding
POMs [13]. Equivalently, POVs indicate the signal power associated with the
corresponding POMs [1, 4].

The dynamics can be decomposed into modal co-ordinates by using the POMs as basis
functions [19]. To this end, we de"ne a proper orthogonal modal matrix V"[v

�
2v

�
].

We can de"ne modal co-ordinates q(t) with elements q
�
(t), i"1,2,M, such that

x(t)"��
���

q
�
(t)v

�
"Vq. As such, the ensemble matrix is X"QV�, where Q is an ensemble

of proper modal co-ordinates (POCs). Thus,

Q"[q
�
, q

�
,2 , q

�
],

where q
�
"(q

�
(t
�
), q

�
(t
�
),2, q

�
(t
�
))�, for i"1,2,M, are individual modal co-ordinate

histories. If V is normalized, then V�V"I because of orthonormality. Thus, we can extract
the POC histories q

�
(t) from the original ensemble X via Q"XV. Each modal co-ordinate

represents the dynamics in the axis of a corresponding POM. The mean squared value of
this modal co-ordinate is the associated POV.

In the special case of linear, lightly damped systems with uniform mass distributions (or
made so by a co-ordinate transformation), under a multi-modal free response, the POMs
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converge to the linear normal modes (LNMs) [13, 15], approximately in the case of
continuous systems [14].

If the POMs are indeed identical to the LNMs, then the POCs q
�
(t) and the true linear

normal modal co-ordinates �
�
(t) are identical. Suppose the POMs di!er from the LNMs, �

�
,

such that *
�
"�

�
#�

�
. Then, x(t)"Vq(t)"[�

�
#�

�
,�

�
#�

�
,2,�

�
#�

�
]q. By

orthogonality of the POMs, q(t)"V�x(t), whence

q
�
(t)"��

�
x(t)#��

�
x(t)"�

�
(t)#��

�
x(t), (1)

that is if the mass distribution is uniform such that ��
�
�
�
"�

��
. The error vector �

�
can be

written in terms of linear normal modes by using the expansion theorem [20]:
�
�
"��

�������
d
�
�

�
. Hence,

q
�
(t)"�

�
(t)#

�
�

�������

d
�
�
�
(t). (2)

Thus, the proper orthogonal modal co-ordinate q
�
(t) is polluted by other normal modal

co-ordinates depending on the deviation of the POM v
�
from the LNM �

�
as well as the

relative strengths of linear normalmodal components �
�
(t). Small deviations d

�
lead to small

impurities in q
�
(t), while large modal co-ordinate dynamics �

�
increase the impurity of q

�
(t).

POC histories and spectra have been examined in a simulated homogeneous beam [19]
and the dominant harmonic represented the modal characteristics in the lower modes of the
beam. If the POMs do not represent the LNMs (e.g., if the mass distribution is not uniform
[13, 14]), we cannot make a clear connection between q

�
(t) and �

�
(t). Furthermore, for

steady state responses to harmonic excitations, the connection is absent, unless the
excitation is measured and incorporated into the POD [15].

2.2. MODAL SIGNIFICANCE

We will be looking at the POVs, which are the mean squared values of POCs, and also
the POCs themselves, to extract information about modal activity. We will explore
a POV-based criterion for dynamical signi"cance based on determining the number of
POVs that are above the noise #oor. The idea here is that POVs above the noise #oor
represent mean squared proper orthogonal modal dynamics that have a meaningful
deterministic contribution. This criterion draws o! an idea formerly applied to a similar
data processing tool, singular system analysis (SSA), which was proposed for putting
bounds on the number of active state variables from a single observable [21]. Subsequent
studies had shown that conclusions drawn about state activities by using SSA can be
erroneous.

The application of singular system analysis as presented by Broomhead and King [21]
occurs not on an ensemble of distinct measurements, but rather on an ensemble of delays of
a single sampled observable, y(t

�
), where t

�
are time samples. A phase-space delay

reconstruction [22, 23] is performed by forming vectors s
�
"(y(t

�
), y(t

���
),2, y(t

������	�
))�,

for j"1,2,2,N, in the E-dimensional delay space, where the delay k and the dimension
E are chosen according to the standard methods [24]. The ensemble matrix is then
S"[s

�
,s
�
,2,s

�
]�. From this, the autocorrelation matrix is then R"(1/N)S�S. R has

eigenvectors and eigenvalues, which are the singular vectors and squared singular values of
S. Again, the eigenvectors are the principal axes of inertia of the data in the delay space, and
the eigenvalues are the mean squared values of the delay vectors in the directions of the
eigenvectors.
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The idea proposed originally [21] was to estimate E, and hence the number of delay
co-ordinates needed to describe the data, by "rst choosing a reconstruction dimension
larger than E, and "nding the singular values above the noise level. The argument was that
the ellipsoid of inertia has only as many signi"cant axes as there are meaningful
independent co-ordinates, which, in the case of phase-space delay reconstructions, are
delays of a single observable. The number of signi"cant axes would provide an estimate of
E based on statistics, rather than geometry (i.e., not based on whether trajectories cross). As
it turns out, in the scenario of the delay reconstruction, in which the columns of S come from
delays of the same sampled continuous waveform, an S matrix of arbitrary size can have full
rank, and so this criterion does not lead to an estimate of the number of independent delay
co-ordinates needed to describe the data [25}28].

In the POD, the columns of X come from distinct, and potentially independent,
measurements. If the response of a linear system with synchronous modes occurs in few
modes, and a greater number of measurements are taken to build the ensemble matrix X, we
would expect X to have a low rank. For example, suppose a beam vibrates in one mode, but
is measured at several locations. The rank of X would be one.

More generally, this low rank of X may not hold. A synchronous non-linear normal
mode, for example, would form a curve in the measurement space, and could lead to
a full-rank X. As an example, the POD of a single synchronous normal modal response was
examined for a non-linear beam simulated with "ve active linear modal co-ordinates [14].
The largest "ve POVs, 46)96, 0)1227, 0)2958e-3, 18)59e-6, and 11)34e-6, were above the noise
#oor. Clearly, the number of POVs above the noise #oor exceeded the number of active
non-linear normal modes, which was one.

3. EXPERIMENTS WITH A LINEAR BEAM

3.1. APPARATUS AND DISPLACEMENT MEASUREMENT

These experiments with a linear beam were originally conducted to test the applicability
of POD as a linear modal analysis tool [29]. A cantilevered steel beam of 0)394 m length,
0)012 m width, and 0)00079 m thickness was "xed at one end in a steel clamp. The natural
frequencies were found to be 4)5, 27)2, 75)5, 147, 243, and 365 Hz. The theoretical modal
frequencies of the Euler-beam model were 4)5, 28)4, 79)4, 156, 257, and 384 Hz.

Six strain-gage pairs were placed along the beam to sense bending strains. The locations
of the strain-gage pairs were x

�
"5)27�10�
m, x

�
"0)0543m, x



"0)1033m,

x
�
"0)1523m, x

�
"0)2013m, and x


"0)2503m, measured from the clamped end. The

strain gages were biased toward the clamp for strain sensitivity, while the desired
displacement locations are to be equally spaced from clamp to tip, to satisfy a condition for
the approximation of LNMs by POMs [14].

The strains were converted into displacement estimates in the following way. The
bending strain in a symmetric beam at a location x

�
is related to the transverse de#ection

y(x, t) by

�(x
�
, t)"c�

��y(x, t)
�x� �

	�	
�

, (3)

where c is half of the thickness of the beam. If we approximate

y (x, t)+
�
� �

�
(x)u

�
(t), (4)
���
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where �
�
(x) are the basis functions that satisfy the geometric boundary conditions, and u

�
(t)

are the generalized co-ordinates. Evaluating y(x, t) atMK distinct locations x
�
, we can write

y"�u, (5)

where y
�
"y(x

�
, t) are the elements of the MK -vector y, �

��
"�

�
(x

�
) are the elements of

MK �M matrix �, x
�
are the desired displacement locations, and u

�
(t) are the elements of

M-vector u.
Using equations (3) and (4), and evaluating at M strain-gage locations x

�
, the vector of

measured strains are related to modal co-ordinates by

�L "c�u, (6)

where the measured strains �
�
"�(x

�
) are the elements of �L , and �

��
"d��

�
(x)/dx��

	�	�
are

the elements ofM�Mmatrix �. As such, the generalized co-ordinates u can be expressed as

u"

1

c
����L . (7)

Matrix � is invertible as long as the second derivatives of the linearly independent basis
functions remain independent.

Our goal is to take M strains at measured locations on the beam, and estimate
MK displacements at some other locations x

�
,2,x

�K . Thus, the M�M matrix � is
constructed based on the M actual strain-gage positions and M basis functions, and the
MK �M matrix � is built based on the M basis functions evaluated at MK desired
displacement locations. The basis functions chosen were the theoretical normal modes of
a cantilevered Euler beam. (While it may seem unnecessary to perform POD when the
theoretical modes are known, our purpose is not to identify modes but to illustrate the role
of POCs.) The resulting vector of displacements is

y"

1

c
�����L . (8)

In this study, M"6 and MK "20. Therefore, we have 20 displacement histories
(approximated via modal truncation) which are linearly dependent. There are at most six
independent displacements, which can produce only six meaningful modes. The motivation
for usingMK 'M is to `improvea the spatial resolution for modal analysis [29], knowing of
course that the resolution is not truly improved, rather the displacements are interpolated
across the beam, using the functions �

�
(x) as a basis for the interpolation.

3.2. POMS AND POVS OF THE BEAM

The beam was excited with a simple impulse, and the ensuing free vibration was
monitored. The six strain histories were simultaneously sampled and, due to nuances in the
data acquisition system, recorded in 0)2 s windows which were then concatenated. These
strain histories were later post-processed according to the above development to produce
20 redundant displacement histories. A total of 800 samples were recorded. As such, the
ensemble matrix X was 800�20. The correlation matrix R was formed, and the POMs and
POVs were extracted.

The POVs are plotted in a logarithmic scale in Figure 1. We know a priori that there are
a maximum of six detectable independent modes. Everything beyond six is spurious. This is
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brought out in the logarithmic plots. The "rst six POVs are distinct from the spurious set.
The spurious POVs are not clearly distinguishable and can be considered as noise. This
suggests that there could be six meaningful modes detected in the system response.

If �
�
denotes the POVs, and � is their sum, then in this example �

�
/�"0)9928,

(�
�
#�

�
)/�"0)999954, and (�

�
#�

�
#�



)/�"0)9999991.

Figure 2 shows the "rst eight POMs plotted with circles. The "rst six are representative,
at least qualitatively, of the "rst six linear normal modes of a cantilevered Euler beam,
which are plotted with solid lines. The deviation could arise in the spatial resolution of the
sensors, the choice of basis functions, or in the deviation of the beam from an ideal
cantilevered beam. The clamp is likely to be non-ideal. The next two modes (and indeed the
next 12 modes) are not coherent. The structure of the modes, while preserving the clamped
boundary condition, is noisy, as the modes are generated from the noise level of the system.
None of the theoretical normal modes clearly resemble the seventh and eighth POMs. The
conclusion drawn from the POMs is that there are six modes captured in the system
response, the maximum we expected. Thus, the POMs and POVs point to the same
conclusion.

This example is special because of the clear delineation between deterministic and
randommodal information, and is therefore illustrative. It is not a contrived example, as the
experiment was developed purposefully for modal analysis, and it involves the real situation
of having a limited number of sensors.

More typically, there might be enough independent sensors for the POVs to descend into
the noise level. To examine this scenario, we added random noise post partum to the
displacement data. A random number was added to each displacement datum. The random
signal had a uniform distribution of zero mean and a root mean squared value of 0)26% of
the square root of the maximum POV. (The maximum POV indicates the mean squared
value of the associated POC.)

The POD was then performed. Under such conditions, the logarithms of the POVs had
the form of those plotted in Figure 3. There were clearly three POVs above the noise #oor.
The POVs are such that �

�
/�"0)9927,(�

�
#�

�
)/�"0)99983, and (�

�
#�

�
#�



)/�"

0)99989. The "rst six associated POMs are shown in Figure 4. The "rst three POMs were
well representative of the "rst three linear normal modes. The subsequent POMs have no
correlation with linear normal modes, and do not represent deterministic dynamical
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properties. As such, three modes are identi"able, consistent with three POVs above the
noise #oor. The ratio of the POV noise #oor to the maximum POV was 0)0028, close to the
relative level of the introduced noise.

If we consider the per cent power criterion, what result would we have? In each case,
undoctored and random noise added, according to the 99% criterion, we have one
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signi"cant mode. According to the 99)9 and 99)99% criteria, we have two and three
signi"cant modes (barely four modes in the noisy data). The result is di!erent from the noise
level criterion. But the per cent power criterion is a prescription, and it holds meaning
toward the determination of the number of signi"cant dominantmodes. Indeed, this system,
if modelled for its large-scale behavior, might aptly be described by 1}3 modes, depending
on what is needed out of the model.

3.3. PROPER ORTHOGONAL CO-ORDINATES

Since our data contains 0)2 s windows of continuous sampling, we look at proper
orthogonal modal co-ordinates q

�
(t) from Q"XV during a single continuous window, in

this case the second 0)2 s of the response.
For the noise-free case the POCs are plotted in Figure 5. The visual impression is that the
"rst six modal co-ordinate histories are distinct, and that the last two, which are spurious,
give no new information in their dynamics. The "rst two modes seem to be dominated by
harmonic components of distinct frequencies.

The fast Fourier transforms of these signals are shown in Figure 6. The "rst two modes
are clearly dominated by the "rst two modal frequencies of the beam. The third mode
already has a stronger component from the second linear normal mode than from the third
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linear normal mode, judging by the frequency content. This happens because the third
POM is not identical with the third LNM. Looking at the close comparison with
theoretical modes in Figure 2, it may be a surprise that the third POC is dominated by the
second modal frequency. It means that the contribution of the second normal mode in the
third POC, that is d�
	

�
�
�
(t), where d�
	

�
represents the component of the second linear normal

in the third POM, is stronger than the third normal modal co-ordinate �


(t). However, the

modal power distribution, i.e. the set of POVs, suggests that the third frequency pales in
comparison to lower modal frequencies. At a glance, the fourth POC does not seem to
introduce meaningful information about modal frequencies, while the "fth does, and the
sixth again does not. (But this could be a matter of the vertical-axis scale.) It is likely that the
six modal frequencies are present, since the six modes were well represented, but that the
"fth and sixth frequency components are very small compared to the others. (If we had
a longer continuous time record available, we might get more insight from the improved
frequency resolution.) In this system, the POMs deviate slightly from the LNMs, and the
normal modal components shu%e into the POCs according to equation (2).

The proper orthogonal modal co-ordinate histories were also examined in the
noise-contaminated case. Figure 7 portrays the "rst four modal histories, which can be
compared to the "rst four modal histories in the noise-free case, in Figure 5. The "rst two
POCs have a clear representation of the respective modal dynamics. The third modal
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co-ordinate resembles a noisy version of the noise-free case. The fourth, and the higher
modal co-ordinates not shown, are mainly noise.

The FFTs of these modal signals are shown in Figure 8. The "rst three show frequency
content consistent with the noise-free case. The fourth, and subsequent modal co-ordinates
(not shown), are noisy of similar magnitudes.

Consequently, both the POMs and POVs led to the conclusion that three modes were
detectable in the noise-contaminated case.

4. CONCLUSION

POD is often used to assess the number of active modes in a structure by counting the
number of POVs above a prescribed threshold. Another perspective considered here is to
look at the number of POVs above the noise #oor. For nearly linear systems, this gives
a good estimate of the number of observable active modes. For non-linear systems, the
number of POVs above the noise #oor provides an upper bound on the number of active
modes.

The noise-#oor criterion was applied to the free response of a linear beam. Although
some of the modes had very small signal power percentage, the modes represented features
of deterministic dynamics. Due to the limited number of independent sensed displacements,
the number of detectable modes was evident from the quantum separation of POVs from
the noise #oor. However, it provided a useful illustration of the basic ideas employed in the
noise-#oor criterion. We added noise to the data and found that the noise-#oor criterion
was useful in determining active modes. Modes that were active below the noise level were
not recovered.

Proper orthogonal modal co-ordinates can be used to separate the dynamics associated
with each POM. In linear systems, if the POMs accurately portray the LNMs (conditions
have been provided [13, 14]), the POCs can bring out modal frequencies, and presumably
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damping factors. Deviation of the POMs from the LNMs pollutes the modal purity of the
POC time histories.
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